IT课程

IT技术专业学习平台
IT人才专业服务提供商

 

全国热线:400-004-8626

人工智能|05 历史进程到了Google Net

首页    技术博文    计算机视觉    人工智能|05 历史进程到了Google Net

继续加深

自深度学习开始在计算机视觉领域大放光彩,神经网络的结构也是越来越有深度。前文中我们讲解的VGGNet就达到了最多19层的计算深度,而本文所描述的架构是一个22层深度的神经网络,此神经网络的架构图在本文中能够独占一页,读者可以测试一下您的手机,是否可以确保清晰看到下图中每个字的前提下,完整显示下图所有内容(图片来自网络)。

Inception

既然谷歌把这个神经网络成为Inception Net,那么就肯定有它的特殊之处,论文中描述了这样的一种层结构。Inception层对前层传输过来的信号进行多维度卷积并行处理,原始的naïve版本经过试验会导致计算量爆表,而修正后的减维度版本则解决了这个问题,出现这种问题的主要原因是5x5的卷积操作和3x3的池化操作不应该并行进行,下图中的b就是减维度版本,仅仅是增加了一些1x1的卷积就解决了这个问题。

您能在最上面的长图中找出几个Inception层呢?答案就在下面这个说明表中,准确的说,在长图中从下往上看,第二个Max Pool 过后就是第一个Inception3a了。

一些细节

值得一提的是,AlexNet中的LRN层又出现在了Inception Net v1中,不过很快它将又被移除,感觉LRN真心苦,总被拉拢与抛弃。而另一方面,谷歌对于此架构给予了很高的期望,首先从命名上来看就纪念了LeNet-5Google Inception Net简称为GoogLeNet。其次自发布本文后,GoogLeNet就一直向Inference(感知)的方向前进,意在将神经网络做的更实用,毕竟这些模型应该是被所有人拿来用的,而不是仅仅供奉在比赛的圣堂中。本文也描述了很现实的数据问题,即想Image Net这样有专业分类的数据实在难找,例如下面的图像,对于我这种普通人而言,看起来明明就是一样的狗,但在Image Net中却有着更专业的分类。这篇GoogLeNet的开山文就介绍到这里,下回我们继续进入V2版本看看来自Google的人工智能技术如何发展变更。

2018年11月8日 18:30
浏览量:0
收藏
本网站由阿里云提供云计算及安全服务 Powered by CloudDream